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A NECESSARY CONDITION FOR ADMISSIBILITY?

By LAWRENCE D. BROWN
Rutgers University and Cornell University

The main theorem of this note is required in a paper of Brown. Briefly, the
theorem shows that procedures which can be improved on in a neighborhood of
infinity are either inadmissible or are generalized Bayes for a (possibly im-
proper) prior whose rate of growth at infinity is of an appropriate order.

This theorem is applied here to show that the risk of the usual estimator of a
two dimensional normal mean, #, cannot be improved on near oo at order
1=2

Consider a statistical decision problem % with sample space X, B,; parameter
space O, Bg; decision space @, B,; distributions {Fy: § € O}; and loss function
L: ® X @ —[0, o0). Assume that { F,} is a dominated family and let » be a o-finite
measure such that {F;} ~ v i.e., (#(B) > 0« 30 D Fy(B) > 0). Let f) = dF,/dv.
Assume that ©, @ are both locally compact second countable topological spaces
and their o fields are the respective Borel fields. Let g be a real valued function. If
the space is not compact, the symbolism lim inf, . g(f#) is defined by
lim infy_, _ g(8) = sup{inf{g(f): 6 & S}: S C O, S is compact}. The symbolism
lim sup,_, ., g(@) and lim,_,  g(8) is similarly defined.

Assume L(0,-) is lower semicontinuous on @ for each # € ©. If @ is not
compact assume there exists a second countable compactification @ of @ and a
measurable map 4: @ — @ such that L(0, h(a)) £ liminf, . ,cq L(8, a). If @
is not compact and lim,_,  L(8, a) = sup,c¢ L(0, a) this condition is easily satis-
fied, for then one may choose @ = @ U {0} and h(a) = a for a € @, and
h(o0) = a, € @ for any fixed ay € @.)

PROPOSITION 1. Under the above assumptions the space of risk functions is
“subcompact”. That is, define T' = {r: ® — [0, 00]|3 (measurable) procedure § >
r(8) Z R(0, 8)V8}. Then I is compact in the topology of pointwise convergence.

ProOF. See Le Cam (1955). []

Let G be any nonnegative o-finite measure on O, B¢ giving finite measure to
compact subsets of ©. Define Bg(a|x) = [L(0, a)fy(x)G(dB)/ [f(x)G(d0) =
Vs(alx)/ Wg(x). G is called a generalized prior if G(®) # 0. A procedure § is
called generalized Bayes for G if {x: 8(A(x)|x) # 1} has (outer) »-measure zero
where A(x) = Ag(x) = {a: Vg(a|x) = inf,cq Vg(alx)}). If S € By then & is
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CONDITION AND ADMISSIBILITY 541

called generalized Bayes a.e. (¥) on S for G if the (outer) »-measure of S N
{x: 8(A(x)|x) # 1} is 0. [Some authors use a slightly different terminology. They
would require W;(x) < oo, x € S, before calling 8 generalized Bayes on S for G.]

PROPOSITION 2. Under the above assumptions, for any given generalized prior G
there exists a (nonrandomized) generalized Bayes procedure. If, also X is locally
compact second countable with Borel field By then there is a (nonrandomized)
generalized Bayes procedure with §(A(x)|x) = 1 for all x € X.

Note: this proposition is also valid if L: ® X & — (— o0, c0) with L(8, a) >
L(#) for alla € @ and [|L(8)|G(dF) < oo.

PROOF. See Brown and Purves (1973). []
The following theorem involves two further continuity assumptions: Assume
L(-, a): ® > [0, oo] is continuous for each a € @, and f.(x): ® — [0, o0) is also
continuous for each x € X.

THEOREM. Make the above assumptions. Let 8, be any admissible procedure. If ©
is compact let
(1) S = {x: x € X, supyce R(8, 8y)fy(x) < }.
Then §, is generalized Bayes a.e. (v) on S for some prior G, with G(®) = 1.

If © is not compact assume that there is a continuous h: ® — (0, o) and a
procedure 8’ with R(8,8") < oo for all 8 € © and
2) lim inf,_, ., A(8)(R(6, &) — R(8,8")) =A > 0.
Let

S ={x:x € X,limy_ h(8)L(8, a)fy(x) = OVa € @, lim,_, ., h(8)fy(x) =0,
and

supg o h(0)R(6, 8p)fy(x) < 0}.

Then §, is generalized Bayes a.e.(v) on S for some generalized prior G, satisfying

(3) Jh™(8)Gy(dh) < oo.

[Note that if x € S and (3) is satisfied then W (x) = | To(x)h(8)h ™' (0)Gy(dB)
< o and ¥ (alx) = [h(8)L(8, a)fy(x)h ~1(8)Gy(df) < 0. Thus, except for cer-
tain trivial statistical situations, not all procedures will be generalized Bayes on S
for G,. In fact if L(8,-) is strictly convex than the generalized Bayes procedure for
G, is (essentially) uniquely determined on S.]

PrOOF. Consider the case where © is not compact. Let §, be admissible and
h, §’, S as in the statement of the theorem. Consider a modified problem, ? *, with
loss function L*(0, a) = (L(8, a) — R(8, 8,))h(8). (The risk, etc., in problem P *
will be denoted by R*, etc.) Note that in this problem the procedure §, is
admissible and has risk function R*(6, 8,) = 0. Let r,(d) = — i~'. Then r(-) & I
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since 8, is admissible in % *. Hence r,(-) can be separated from the compact set I*
by some finite measure, G;, say. It is easy to check that G, may be taken to be a
probability measure, and

4 —i~! = [r(8)G(df) £ infycq [R*(8, 8) G/(db)
= [R*(8, &;)G,(d0) = [R*(8, 8))G,(h)
=0

where 8, denotes a Bayes procedure for G,;. Note that §(4&(x)|x) = 1 a.e.(») by

Proposition 2. [Equation (4) merely says that §) is Bayes in the wide sense for

problem ¥ *.]

By taking subsequences, if necessary, assume that G; - G “weakly” (in the sense
that [c(0)G(df) — [c(8)G(d8) for all continuous c¢ such that lim,_, ., c(8) = 0).
Note that Bg(a|x) — Bg(a|x) for all x € S, a € Q.

Let B = sup R*(6, §') < 0. Let C C © be a compact subset such that R*(0, 8”)
< —A/2 for § & C. C exists by virtue of condition (2). Then —i~' =

SR*(8, 8")G(df) < BG(C) — (A\/2)(1 — G(C)). It follows that lim inf, , G(C)
> 0, and hence G(C) > 0.
Let

(5) S; = {x: x € S, [B(a|x)8(dalx) — [BE(alx)8(da]x) < i-%}_
Then

(6) fxes—s,.fﬁ(x)Gi(dO)p(dx) éi_%

by (4) since [(R*(0, &) — R*(9, 8))G(dh) 2 [,es-s)Bé(a|x)(d(dalx) —
8,(da|x))fy(x)G,(df)v(dx). Let S’ = lim sup S,. Then »(S — S’) = 0 by (6).
Let x € S’. Let {i’} D {i} be a subsequence such that x € S, for i’ € {i’}. Then
inf, B&(a|x)
2 lim, _, inf, B (a|x)
(7) > lim inf, ., B2 (alx)8(dalx)
2 | Bg(alx)dy(dalx).

This proves that §, is generalized Bayes a.e.(r) on S for the generalized prior G in
problem %P *.
Let Go(df) = h(9)G(df). Then, for x € §, W5 (x) < o0 and

Ws(x)Bg(a|x) = [L(8, a)fy(x)Go(dB)
= [h(8)L(8, a)fy(x) G(db)
= Wq(x)Bg(alx) + [h(6)R(D, 8o)fy(x)G(dP).

since [h(9)R(D, 8o)fy(x)G(dF) < sup h(B)R(8, 8p)fy(x) < oo. Hence Ag(x) =
A%(x) and so 8, is also generalized Bayes in problem & for the generalized prior
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G,. And, [h~'(0)G(df) = [G(df) < 1. This proves the theorem when © is not
compact.

When O is compact the proof is similar, but simpler. Let L* = L so that
@ = @ * The sequence G, is constructed as before, and G, — G weakly, without
loss of generality. (That is, [c(8)Gy(d#) — [c(8)G(df) for all continuous c.) Follow
the sequence of steps from (5) through (7) to show that §, is generalized Bayes
a.e.(») on S for problem & = ®*. Letting G, = G completes the proof since
JG(df) = lim,_,,, [G(d8) = 1. [

We conjecture that the theorem remains true if the continuity condition on f is
replaced by the condition that f: ® — L,(X, By, ») be continuous.

This theorem has some interesting applications concerning the existence of prior
distributions for which the given procedure is Bayes. These follow from the
theorem together with the simple extension provided by the following proposition.

PROPOSITION 3. Suppose 8, is generalized Bayes relative to G, on S, and
(X — S) = 0. Then [R(8, 6,)Gy(df) = infs[R(0, §)Gy(df) < oo.

PrROOF. Let 8§, be any procedure. Then

SR(8, 80) Go(dB) = [of x oL (8, a)8y(dalx)fy(x)»(dx)Go(dh)
= [s/eleL(8, a)8y(da|x)fy(x)Go(dd)r(dx)
< [sSefel(8, a)8,(dalx)fy(x)Go(db)»(dx)
(since 8, is generalized Bayes)
= fofxSaL (0, a)8,(da|x)fy(x)v(dx)Go(db)
= [R(8, 8,)Gy(db). 0

The following corollary and application provide an example of the results
attainable.

COROLLARY 1. Suppose © is not compact but the problem has a finite minimax
value, m < oo. Suppose
(8) limg_, o, fy(x) = 0, lim,_, ., L(6, a)fy(x) = 0
for all x € X,a € Q. Let 8, be any admissible procedure with R(8, 8;) < oo for all
0 € O such that
9) lim inf, , R(0, 8y) — m > 0.

Then 8, is Bayes for some probability measure G, and the Bayes risk is finite.

PrOOF. Apply the theorem with 8’ a minimax procedure (the existence
of 8’ can be deduced from Proposition 1) and with h(8) = (1 + R(6, &)L
Then §, is generalized Bayes for some nonnegative measure G, such that
J(1 + R(8, 8,))Gy(dd) < 0. Hence [Gy(df) < oo and G, can be normalized to be
a probability measure. Condition (8) implies that § = X so that §, is Bayes (as well
as generalized Bayes) relative to G, and [R(0, 8,)Gy(df) < o, as claimed. []
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ExampLE 1. Consider a location parameter problem with X =@ =0 =
R¥f(x) = Jo(x — @) relative to Lebesque measure, and L(6, a) = I(§ — a).
Suppose lim, ., (¢) = oo and [I(#)fy(?) dt < oo. (This implies m < o0.) Consider
the linear estimators defined by §.({cx}|x) = 1,0 <c¢ < 1. Any such estimator
obviously has lim inf, ,  R(#, 8,) = o0 > m. Hence, such a linear estimator can be
admissible only if it is Bayes. []

It is also possible to use this theorem to derive results concerning the existence of
least favorable distributions in testing problems. For example Theorems 3.1 and 4.1
of Lehmann (1952) are direct consequences of the Theorem and Proposition 3.

ExaMpLE 2. For a final application, consider the common problem of estimat-
ing a p-dimensional multivariate normal mean # with squared error loss when the
variance covariance matrix is known to be the identity, When the dimension is
p = 2 then the usual estimator §, (given by §y({x}|x) = 1 in the previous nota-
tion) is admissible and generalized Bayes for the uniform prior. It follows that no
estimator can have smaller risk at o of order |#||2 (To be precise,
lim supg;_,.,/10 I’(R(8, 8) — R(8, 8y)) = O for any procedure 8.)

In dimension p = 1 one gets only the weaker result that no estimator can have
smaller risk than 8, of order ||@|~'. Here it is possible to have smaller risk at co of
order ||| =2 than §,. In fact the generalized Bayes estimator for the prior with
density |§| d9 does have smaller risk than &, of order [|#]|~%; and this latter
estimator cannot be improved in risk at co of order ||#||~2 This generalized Bayes
estimator is discussed more fully in Brown (1971, page 897).
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